
Sepsis Diagnosis via Integrated Breath Sensing System with Change-Point Detection for Real-Time Point-of-Care (**SepsISensoR**)

11 million people out of which 2.9 million children under 5 years old die from sepsis every year – **one death every 2.8 seconds**.

> Project objectives

- In vitro validation using bacterial cultures.
- <u>In vivo</u> test using exhaled gases from mouse models of sepsis.

Sepsis Diagnosis via Integrated Breath Sensing System with Change-Point Detection for Real-Time Point-of-Care (SepsISensoR)

Project team, methodology

- Multidisciplinary team
 - Dr Christoforos Panteli Electrical Engineering Imperial College > UCY
 - Dr Chrysafis Andreou

 - Dr Apidianakis

- Electrical Engineering UCY
- Dr Agapios Agapiou Chemistry UCY
 Dr Andreas Anastasiou Mathematics and Statistics UCY
 - Biology UCY

- Methodology
 - Development and test sensing system with controlled gases.
 - GC-MS analysis of in vitro and in vivo gases.
 - Comparison and improvement of system.

> Main project outputs

- Integrated gas sensing system and its performance characteristics.
- Correlation of gases released by sepsis related bacteria as function of time and amount.
- Correlation of exhaled gases from mouse models as function of time and infection load and type.